Angelelli, C. V. (2009). Using a rubric to assess translation ability: Defining the construct. In C. V. Angelelli & H. E. Jakobson (Eds.), Testing and assessment in translation and interpreting studies (pp. 13–47). John Benjamins Publishing Company.
Bahrini, A., Khamoshifar, M., Abbasimehr, H., Riggs, R. J., Esmaeili, M., Majdabadkohne, R. M., & Pasehvar, M. (2023). ChatGPT: Applications, opportunities, and threats. 2023 Systems and Information Engineering Design Symposium (SIEDS) (pp. 274–279). https://arxiv.org/pdf/ 2304.09103
Bangalore, S., Behrens, B., Michael, C., Ghankot, M., Heilmann, A., Nitzke, J., Schaeffer, M., & Sturm, A. (2016). Syntactic Variance and Priming Effects in Translation. In M. Carl, S. Bangalore, & M. Schaeffer (Eds.), New directions in empirical translation process research, New Frontiers in Translation Studies (pp. 211–238). Springer.
Bentivogli, L., Bisazza, A., Cettolo, M., & Federico, M. (2016). Neural versus phrase-based machine translation quality: A case study. In J. Su, K. Duh, & X. Carreras (Eds.), Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (pp. 257–267). Association for Computational Linguistics. https://aclanthology.org/D16-1025.pdf
Cabrero-Daniel, B. & Sanagustín Cabrero, A. (2023). Perceived trustworthiness of natural language generators. In K. Devlin & J. Fischer, TAS ‘23: Proceedings of the First International Symposium on Trustworthy Autonomous Systems (pp. 1–9). Association for Computing Machinery. https://doi.org/10.1145/3597512.3599715
Colina, S. (2008). Translation quality evaluation: Empirical evidence for a functionalist approach. The Translator, 14(1), 97–134. https://doi.org/10.1080/13556509.2008.10799251
Daems, J. & Macken, L. (2019). Van CAT tot TenT: van computerondersteund vertalen tot vertaalomgevingen. In G. De Sutter & I. Delaere (Eds.),. In balans: een inleiding tot vertaal- en tolkwetenschap (pp. 262–283). Acco.
Dahlkemper, M. N., Lahme, S. Z., & Klein, P. (2023). How do physics students evaluate artificial intelligence responses on comprehension questions? A study on the perceived scientific accuracy and linguistic quality of ChatGPT. Physical Review Physics Education Research, 19(1), 010142. https://doi.org/10.1103/PhysRevPhysEducRes.19.010142
Dankers, V., Bruni, E., & Hupkes, D. (2022). The paradox of the compositionality of natural language: A neural machine translation case study. In S. Muresan, P. Nakov, & A. Villavicencio (Eds.), Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Vol. 1. Long papers (pp. 4154–4175). Association for Computational Linguistics. https://aclanthology.org/2022.acl-long.286.pdf
Duarte, F. (2024). Google Translate – friend or foe?. LanguageWire. https://www.languagewire.com/en/blog/google-translate
De Sutter, G. (Ed.). (2017). De vele gezichten van het Nederlands in Vlaanderen. Een inleiding tot de variatietaalkunde. Acco.
Declercq, C. & van Egdom, G.-W. (2023). No more buying cats in a bag? Literary translation in the age of language automation. Revista Tradumàtica. Tecnologies de la Traducció, (21), 49–62.
Declercq, C. & van Egdom, G.-W. (2025). Beyond the strictest computation of the general proportion: Language automation, machine translation and their complicated possibilities for cultural exchange. In D. Nguyen, B. Mutsvairo, & J. Zeng (Eds.), Technology, power and society (pp. 273–299). Brill.
Davis, D. (2024). Number of ChatGPT Users. Exploding Topics. Geraadpleegd op 21 oktober 2024 van https://explodingtopics.com/blog/chatgpt-users
European Language Industry Survey 2025. Trends, expectations and concerns of the European language industry (2025). https://elis-survey.org/wp-content/uploads/2025/03/ELIS-2025_Report. pdf
Flores, G., Laws, M. B., Mayo, S. J., Zuckerman, B., Abreu, M., Medina, L., & Hardt, E. J. (2003). Errors in medical interpretation and their potential clinical consequences in pediatric encounters. Pediatrics, 111(1), 6–14. https://doi.org/ 10.1542/peds.111.1.6
Freitag, M., Foster, G., Grangier, D., Ratnakar, V., Tan, Q., & Macherey, W. (2021). Experts, errors, and context: A large-scale study of human evaluation for machine translation. Transactions of the Association for Computational Linguistics, 9, 1460–1474. https://doi.org/10.1162/tacl_a_00437
Gulla-Kowalik, O. (2024, 17 april). New ISO Standard 5060 focuses on human evaluation to ensure translation quality. Slator. https://slator.com/new-iso-standard-5060-focuses-on-human-evaluation-to-ensure-translation-quality/
Holmes, J. S. (1988). Translated! Papers on literary translation and translation studies. Rodopi.
House, J. (1997). Translation quality assessment: A model revisited. Gunter Narr Verlag.
House, J. (2001). Translation quality assessment: Linguistic description versus social evaluation. Meta: Journal des traducteurs / Translators’ Journal, 46(2), 243–257. https://doi.org/10.7202/003141ar
Hu, K. & Cadwell, P. (2016). A comparative study of post-editing guidelines. Baltic Journal of Modern Computing, 4, 346–353.
Hurtado Albir, A. (2007). Competence-based curriculum design for training translators. The Interpreter and Translator Trainer, 1(2), 163–195. https://doi.org/10.1080/1750399X.2007.10798757
Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y. J., Madotto, A., & Fung, P. (2023). Survey of hallucination in natural language generation. ACM Computing Surveys, 55(12), article 248. https://doi.org/10.1145/3571730
Kenny, D. (2018). Sustaining disruption? The transition from statistical to neural machine translation. Revista Tradumàtica. Tecnologies de la Traducció, (16), 59–70. https://doi.org/10.5565/rev/tradumatica.221
Kenny, D. (2019). Technology and translator training. In M. O’Hagan (Ed.), The Routledge handbook of translation and technology (pp. 498–515). Routledge.
Koehn, P. (2020). Neural Machine Translation. Cambridge University Press.
Kotze, H. (2023, 1-3 februari). Beyond patterns: How corpus-linguistic comparisons of human and machine translation can help us understand how language works [presentatie]. Convergence Conference: Human-machine integration in translation and interpreting, Guildford, United Kingdom.
Lommel, A. (2018). Metrics for translation quality assessment: A case for standardising error typologies. In J. Moorkens, S. Castilho, F. Gaspari, & S. Doherty (Eds.), Translation quality assessment: From principles to practice (pp. 109–127). Springer.
Massey, G. & Ehrensberger-Dow, M. (2017). Machine learning: Implications for translator education. Lebende Sprachen, 62(2), 300–312. https://doi.org/10.1515/les-2017-0021
Moorkens, J., Castilho, S., Gaspari, F., & Doherty, S. (Eds.). (2018). Translation quality assessment: From principles to practice. Springer.
Mossop, B. (2003). What should be taught at translation school? In A. Pym, C. Fallada, J. R. Biau, & J. Orenstein (Eds.), Innovation and e-learning in translator training (pp. 20-22). Universitat Rovira i Virgili. http://www.intercultural.urv.cat/media/upload/domain_317/arxius/Innovation/ innovation_index.pdf
Natsir, N., Aliah, N., Zulkhaeriyah, Amiruddin, & Esmianti, F. (2023). The impact of language changes caused by technology and social media. Language Literacy: Journal of Linguistics, Literature, and Language Teaching, 7(1), 115–124. https://jurnal.uisu.ac.id/index.php/languageliteracy. https://doi.org/10.30743/ll.v7i1.7021
O’Brien, S. (2010). Introduction to post-editing: Who, what, how and where to next? In Proceedings of the 9th Conference of the Association for Machine Translation in the Americas: Tutorials, Denver, USA. Association for Machine Translation in the Americas. https://aclanthology.org/2010.amta-tutorials.1.pdf
Ooms, M. (2020). Buurtaal: praktische gids voor het Nederlands in België en Nederland. Sterck & De Vreese.
Rivera-Trigueros, I. (2022). Machine translation systems and quality assessment: a systematic review. Language Resources and Evaluation, 56(2), 593–619. https://doi.org/10.1007/s10579-021-09537-5
Schaper, J., Wennekers, A., & de Haan, J. (2019). Trends in Media: Tijd. Sociaal en Cultureel Planbureau.
Specia, L. (2011). Exploiting objective annotations for measuring translation post-editing effort. In M. L. Forcada, H. Depraetere, & V. Vandeghinste (Eds.), Proceedings of the 15th International Conference of the European Association for Machine Translation (pp. 73–80). Leuven.
Specia, L., Raj, D., & Turchi, M. (2010). Machine translation evaluation versus quality estimation. Machine Translation, 24(1), 39–50. https://doi.org/10.1007/s10590-010-9077-2
Stasimioti, M. (2024, 2 april). Unbabel presents a new evaluation metric for chat translation. Slator. https://slator.com/unbabel-presents-new-evaluation-metric-for-chat-translation/
Stichting Lezen – Leesmonitor (2025). Een ander perspectief op ontlezing. https://www.lezen.nl/ onderzoek/een-ander-perspectief-op-ontlezing/
Valero-Garcés, C. & Corrochano, C. C. (2018). Approaches to didactics for technologies in translation and interpreting. Special Issue of trans-kom, 11(2), 154–161. https://www.trans-kom.eu/bd11nr02/trans-kom_11_02_01_Valero_Cedillo_Introduction.20181220.pdf
Van Egdom, G.-W. & Daems, J. (2021, 24 januari). Ontwikkelingen rond literair vertalen en technologie:een inleiding. Filter. Tijdschrift over vertalen. https://www.tijdschrift-filter.nl/webfilter/dossier/literair-vertalen-en-technologie/januari-2021/ontwikkelingen-rond-literair-vertalen-en-technologie-een-inleiding/
Van Egdom, G.-W. & Hartkamp, E. (2023). Generatieve AI en machinevertaling. Praktische handleiding voor het onderwijs. https://netherlands.representation.ec.europa.eu/system/files/2024-02/Lesmodule%20Generatieve%20AI%20en%20MT.NL_.pdf
Van Egdom, G.-W. & Segers, W. (2019). Leren vertalen: een terminologie van de vertaaldidactiek. Pelckmans Pro.
Van Egdom, G.-W., Kosters, O., & Declercq, C. (2023). The riddle of (literary) machine translation quality: Assessing automated quality evaluation metrics in a literary context. Revista Tradumàtica: Tecnologies de la Traducció, (21), 129–159. https://doi.org/10.5565/rev/tradumatica.345
Van Egdom, G.-W., Verplaetse, H., Schrijver, I., Kockaert, H. J., Segers, W., Pauwels, J., Wylin, B., & Bloemen, H. (2018). How to put the translation test to the test? On preselected items evaluation and perturbation. In E. Huertas-Barros, S. Vandepitte, & E. Iglesias-Fernández (Eds.), Quality assurance and assessment practices in translation and interpreting (pp. 26–56). IGI Global.
Van Hee, C. & Hoste, V. (2024). Taaltechnologie ontrafeld. Hoe taal en technologie hand in hand gaan. Pelckmans.
Vanmassenhove, E, Shterionov, D., & Gwilliam, M. (2021). Machine translationese: Effects of algorithmic bias on linguistic complexity in Machine Translation. In P. Merlo, J. Tiedermann, & R. Tsarfaty (Eds.), Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume (pp. 2203–2213). Association for Computational Linguistics.
Vanroy, B., Tezcan, A., & Macken, L. (2023). MATEO: Machine Translation Evaluation Online. In M. Nurminen, J. Brenner, M. Koponen, S. Latomaa, M. Mikhailov, F. Schierl, T. Ranasinghe, E. Vanmassenhove, S. Alvarez-Vidal, N. Aranberri, M. Nunziatini, C. Parra Escartín, M. Forcada, M. Popovic, C. Scarton, & H. Moniz (Eds.), Proceedings of the 24th Annual Conference of The European Association for Machine Translation (pp. 499–500). European Association for Machine Translation.
Waddington, C. (2001). Different methods of evaluating student translations: The question of validity. Meta: Journal des traducteurs / Translators’ Journal, 46(2), 311–325. https://doi.org/10.7202/004583ar
Way, A. (2018). Quality expectations of machine translation. In J. Moorkens, S. Castilho, F. Gaspari, & S. Doherty (Eds.), Translation quality assessment: From principles to practice (pp. 159–178). Springer.
Yuxiu, Y. (2024). Application of translation technology based on AI in translation teaching. Systems and Soft Computing, 6, article 200072.