Buchler, M. (2016). TRACER: Text reuse detection machine. http://www.etrap.eu/research/tracer
Benoit, K., Watanabe, K., Wang, H., Nulty, P., Obeng, A., Müller, S., & Matsuo, A. (2018). Quanteda: An R package for the quantitative analysis of textual data. Journal of Open Source Software, 3(30), 774. https://doi.org/10.21105/joss.00774
Butterworth, C. C., & Chester, A. G. (1962). George Joye (1495?-1553). A Chapter in the History of the English Bible and the English Reformation. University of Pennsylvania Press.
Coffee, N., Koenig, J. P., Poornima, S., Forstall, C., Ossewaarde, R., & Jacobson, S. (2012). The tesserae project: Intertextual analysis of Latin poetry. Literary and Linguistic Computing, 28, 221–228.
Charzyńska-Wójcik, M. (2021). Familiarity and favour: Towards assessing psalm translations. Linguistica Silesiana, 42, 43–77. https://doi.org/10.24425/linsi.2021.137231
Charzyńska-Wójcik, M., & Wójcik, J. (2022). Similarity measurements in tracing textual affinities. A study of psalm 129 in 16th-century devotional manuals. Token, 14, 191–220.
Feldman, R., & Sanger, J. (2007). The Text Mining Handbook. Cambridge University Press.
Forstall, C. W., & Scheirer, W. J. (2019). Quantitative intertextuality. Springer.
Han, J., Kamber, M., & Pei, J. (2012). Data mining: Concepts and techniques (3rd ed.). Morgan Kaufmann Publishers.
Hordyjewicz, M. (2023). Scriptural content of the English medieval Book of Hours: Tracing textual traditions of nine lessons from the Book of Job. Polish Journal of English Studies, 9(1), 82–96.
Huang, A. (2008). Similarity measures for text document clustering. New Zealand Computer Science Research Student Conference, 8, 49–56.
Lis, K., & Wójcik, J. (2023). French and English texts of the Laws of Oléron – Assessing proximity between copies and editions by means of cosine similarity. Bulletin of the John Rylands Library, 99(2), 103–126. https://manchesteruniversitypress.co.uk/9781526178503
Mohan, A., Baggili, I. M., & Rogers, M. K. (2010). Authorship attribution of SMS messages using an n-grams approach. Proceedings of CERIAS Tech Report 2010-11, 1–12. Center for Education and Research Information Assurance and Security Purdue University.
Olsen, M., & Horton, R. (2009). PAIR: Pairwise alignment for intertextual relations. https://code.google.com/archive/p/text-pair
R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org
Russell, S., & Norvig, P. (2021). Artificial intelligence: A modern approach. Global edition. Pearson Higher Ed.
Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(4), 623–656.
Sidorov, G. (2019). Syntactic n-grams in computational linguistics. Springer.
Vinson, D. W., Davis, J. K., Sindi, S., & Dale, R. (2016). Efficient N-gram analysis in R with Cmscu. Behavior Research Methods, 3, 909–921. https://doi.org/10.3758/s13428-016-0766-5
Wójcik, J. (2021). Measuring internal spelling variation of an Early Modern English text. Linguistica Silesiana, 42, 107–123. https://doi.org/10.24425/linsi.2021.137234
Wójcik, J. (2023). Cluster analysis in tracing textual dependencies – A case of psalm 6 in 16th-century English devotional manuals. Digital Humanities Quarterly, 17(3), 1–16. http://www.digitalhumanities.org/dhq/vol/17/3/000694/000694.html