Abrar A., Oeshy N. T., Kabir M., and Ananiadou S. (2025), Religious Bias Landscape in Language and Text-To-Image Models: Analysis, Detection, and Debiasing Strategies, arXiv preprint arXiv:2501.08441. https://doi.org/10.48550/arXiv.2501.08441
Barroso da Silveira J., and Lima E. A. (2024), Racial biases in AIs and Gemini’s Inability to Write Narratives About Black People, Emerging Media 2, no. 2, pp. 277–287. https://doi.org/10.1177/27523543241277564
Binns R., Van Kleek M., Veale M., Lyngs U., Zhao J., and Shadbolt N. (2018), ‘It’s Reducing a Human Being to a Percentage’: Perceptions of Justice in Algorithmic Decisions, CHI 2018, no. 377, pp. 1–14. https://doi.org/10.1145/3173574.3173951
Bojic L. (2024), AI alignment: Assessing the Global Impact of Recommender Systems, Futures 160, June, 103383. https://doi.org/10.1016/j.futures.2024.103383
Brzezinski D., Filipek K., Piwowar K., and Winiarska-Brodowska M. (2024), Algorithms, Artificial Intelligence and Beyond: Theorising Society and Culture of the 21st Century, New York: Routledge.
Choudhary T. (2024), Reducing Racial and Ethnic Bias in AI Models: A Comparative Analysis of ChatGPT and Google Bard, Preprints. https://doi.org/10.20944/preprints202406.2016.v1
Faustino D. and Lippold W. (2023), Colonialismo Digital: Por Uma Crítica Hacker-Fanoniana, Sao Paulo: Boitempo.
Friedman A.B. (2024), The Era of ChatGPT: Recommendations for the Integration of LLMs in Gerontology, Innovation in Aging 8, Supplement_1, p. 586. https://doi.org/10.1093/geroni/igae098.1920
Ghosh S., Venkit P. N., Gautam S., Wilson S., and Caliskan A. (2024), Do Generative AI Models Output Harm While Representing Non-Western Cultures, Proceedings of the Seventh AAAI/ACM Conference on AI, Ethics, and Society 7, no. 1, pp. 476-489. https://doi.org/10.1609/aies.v7i1.31651
Goswami A. (2024), Recommendation System as a Social Determinant of Health, Digital Society 3, no. 28. https://doi.org/10.1007/s44206-024-00118-x
Hau M. F. and Hendriksen Ch. (2024), Beyond Bias: Studying ‘Culture’ in LLMs and AI Chatbots, SciSpace.com. https://scispace.com/papers/beyond-bias-studying-culture-in-llms-and-ai-chatbots-6pimgex90zjk.
Hofstede G.H. (2001), Culture’s Consequences: Comparing Values, Behaviors, Institutions, and Organizations Across Nations (2nd ed.), Thousand Oaks, CA: Sage Publications.
House R.J., Hanges P.J., Javidan M., Dorfman P.W., and Gupta V. (Eds.) (2004), Culture, Leadership, and Organizations: The GLOBE Study of 62 Societies, Thousand Oaks: Sage Publications.
Inglehart R. and Welzel C. (2005), Modernization, Cultural Change, and Democracy: The Human Development Sequence, Cambridge: Cambridge University Press.
Jenks C.J. (2024), Communicating the Cultural Other: Trust and Bias in Generative AI and Large Language Models, Applied Linguistics Review 16, no. 2, pp. 787-795. https://doi.org/10.1515/applirev-2024-0196
Jobin A., Ienca M., and Vayena E. (2019), The Global Landscape of AI Ethics Guidelines, Nature Machine Intelligence 1, pp. 389-399. https://doi.org/10.1038/s42256-019-0088-2
Karpouzis K. (2024), Plato’s Shadows in the Digital Cave: Controlling Cultural Bias in Generative AI, Electronics 13, no. 8, 1457. https://doi.org/10.3390/electronics13081457
Khatun A. (2024), Media, Propaganda, and the Othering Process of the Rohingyas, [in:] K. Ahmed and M.R. Islam (Eds.), Understanding the Rohingya displacement: International Perspectives on Migration, Singapore: Springer, pp. 169-199.
Lewis A. A. (2025), Unpacking Cultural Bias in AI Language Learning Tools: An Analysis of Impacts and Strategies for Inclusion in Diverse Educational Settings, International Journal of Research and Innovation in Social Science 9, no. 1, pp. 1878-1892. https://dx.doi.org/10.47772/IJRISS.2025.9010151
Liu Z. (2023), Cultural Bias in Large Language Models: A Comprehensive Analysis and Mitigation Strategies, Journal of Transcultural Communication 3, no. 2, pp. 224-244. https://doi.org/10.1515/jtc-2023-0019
Masoud R., Liu Z., Ferianc M., Treleaven P.C., and Rodrigues M.R. (2025), Cultural Alignment in Large Language Models: An Explanatory Analysis Based on Hofstede’s Cultural Dimensions, Proceedings of the 31st International Conference on Computational Linguistics, pp. 8474–8503, Abu Dhabi: Association for Computational Linguistics. https://aclanthology.org/2025.coling-main.567/
Messner W., Greene T., and Matalone J. (2023), From Bytes to Biases: Investigating the Cultural Self-Perception of Large Language Models, Journal of Public Policy & Marketing 44, no. 3, pp. 370-391. https://doi.org/10.1177/07439156251319788
Mushkani R., Berard H., Cohen A., and Koeski S. (2025), The Right to AI, arXiv preprint arXiv:2501.17899. https://doi.org/10.48550/arXiv.2501.17899
Mustafa Z. U., Amir M., Mustafa M., and Anwar M. A. (2025), Harmony Amidst Division: Leveraging Genetic Algorithms to Counteract Polarisation in Online Platforms, International Journal of Computational Science and Engineering 28, no. 7, pp. 1-17. https://doi.org/10.1504/IJCSE.2025.143956
Noble S.U. (2018), Algorithms of oppression: How Search Engines Reinforce Racism, New York: New York University Press.
Rafikova A. and Voronin A. (2025), Human–Chatbot Communication: a Systematic Review of Psychologic Studies, AI & Society 40, pp. 5389-5408. https://doi.org/10.1007/s00146-025-02277-y
Rauhala J. and Xin T. (2024), What Culture is Chat GPT’s AI?, [in:] M. Lehto and M. Karjalainen (Eds.), Proceedings of the 23rd European Conference on Cyber Warfare and Security 23, no. 1, pp. 812-815. https://doi.org/10.34190/eccws.23.1.2364
Saumure R., De Freitas J., and Puntoni S. (2025), Humor as a Window into Generative AI bias, Scientific Reports 15, 1326. https://doi.org/10.1038/s41598-024-83384-6
Si Y., Jiang C., Wei X., Fang S., Li Y., and Hu Y. (2024), Analysis of the Correlation of Topic Feature Changes Based on the LDA Model, Theoretical and Natural Science 53, pp. 73-82. https://doi.org/10.54254/2753-8818/53/20240221
Tao Y., Viberg O., Baker R.S., and Kizilcec R.F. (2024), Cultural Bias and Cultural Alignment of Large Language Models, PNAS Nexus 3, no. 9, p. 346. https://doi.org/10.1093/pnasnexus/pgae346
Tsuria R. and Tsuria Y. (2024), Artificial Intelligence’s Understanding of Religion: Investigating the Moralistic Approaches Presented by Generative Artificial Intelligence Tools, Religions 15, no. 3, p. 375. https://doi.org/10.3390/rel15030375
Vicsek L., Vansco A., Zajko M., and Takacs J. (2024), Exploring LGBTQ+ Bias in Generative AI Answers Across Different Country and Religious Contexts, arXiv. https://doi.org/10.48550/arxiv.2407.03473
Yuan H., Che Z., Li S., Zhang Y., Hu X., and Luo S. (2024), The High Dimensional Psychological Profile and Cultural Bias of ChatGPT, arXiv. https://doi.org/10.48550/arxiv.2405.03387
Yuan X., Hu J., and Zhang Q. (2024), A Comparative Analysis of Cultural Alignment in Large Language Models in Bilingual Contexts, OSF. https://doi.org/10.31219/osf.io/6hpcf
Zhu S., Wang W., and Liu Y. (2024), Quite Good, But Not Enough: Nationality Bias in Large Language Models, arXiv. https://doi.org/10.48550/arxiv.2405.06996